e —— o

—

Introduction to Computer Programming

Assoc. Prof. Ozgiir ZEYDAN
https://ozgurzeydan.com.tr/

https://ozgurzeydan.com.tr/

-
Computer Programming il

A IS @ programmable machine. This means it can
execute a programmed list of instructions and respond to
new instructions that it is given.

is the process of developing and
implementing various sets of instructions to enable a
computer to do a certain task.

are written to solve problems or perform tasks on
a computer.

N

Computer Programming

> translate the
solutions or tasks into a
language the computer can
understand.

» As we write programs, we must
keep in mind that the computer
will only do what we instruct it
to do.

Because of this, we must be
very careful and thorough with
Instructions.

First Computer Programmer: Ada
Lovelace

Ada Lovelace is the first
person to develop an
algorithm for a machine.

In 1842-1843, Lovelace translated an article about Charles
Babbage's proposed Analylic Engine. In her notes, she

R EERC NG Tl T R T L A RO CH R the first computer program,

making her the first computer programmer.

She also theorized that the computer could, one day,

play music and chess.

a U.S. Depariment of Defense computer language,

Inamed in her honor.
4

v, v, ‘l'.""'
A e »

-

Algorithm

~> An algorithm is a list of
instructions, procedures, or
formulas used to solve a
problem.

> The word derives from the
name of the mathematician,
Mohammed ibn-Musa al-
Khwarizmi (ElI-Harezmi), (780
— 850).

GIOUTATD CCCE

7
El

-

Pseudocode .

> iS @ computer programming language that
resembles plain English that cannot be compiled or
I executed, but explains a resolution to a problem.

Source Code

~ The source code consists of the programming statements
that are created by a programmer with a text editor or a
visual programming tool and then saved in a file.

~ For example, a programmer using the C language types in
a desired sequence of C language statements using a text
editor and then saves them as a named file.

This file is said to contain the source code.

B

i

I

Flowchart

~ A flowchart is a formalized graphic representation of a logic
sequence, work or manufacturing process, organization
chart, or similar formalized structure.

» The purpose of a flow chart is to provide people with a
common language or reference point when dealing with a
project or process.

Flowcharts use simple geometric symbols and arrows to
define relationships.

Programming Languages

~ Computer programming is almost always done by means of
Programming Language.

I ~ There exists 8945 programming languages in the world

(https://hopl.info).
» Some of them are known by only their developers!

For further information:
http://en.wikipedia.org/wiki/List of programming languages

https://hopl.info/
http://en.wikipedia.org/wiki/List_of_programming_languages

Programming Languages

ks
=
JavaScript Pe_rl — NET O @
8. O S o S op
Mark'iég'?_og&u GwPXMlez P o> =g
A E = 'O asSCal; w85, w00
Oy 88120 =V sualBa cchwgn:mgo'c
agit Q 5 VisualBasic: 5,5 8 133.8
“’58 N 0:Cob |Proto°°-ba§8d'a’?“°)
sabythongec; Asseribly:-1- ©F &
:on_lg_T:)gg 5|— bj&Ct -Oriented:.: gf‘“ ’g%mﬁﬁa
TSniE BRI ERotran 52 0
ST CREE i8] _9 |
Visual Cshap— 0O Os OH
Smalitalk Q. Qh.

10

History of Programming Languages

The first languages

The Beginning Fundamentals
. O [0[0[7
L

|
|

1843

H

1936

i

i_.:
6

Ada Ltowelace
wroie a program
for the Analytical

Engine

@

v
Alonzo Church introduced
Lambda Calculus and Alan
Turing come up with the
concept of Turing Machine.

1947

lohn von Neumann came
up with the concept of
stored program compuler
ar the Von Neumonn

Architecture

Power at the highest level

00O

1955 1958 1959 1964
\ 3 A/‘.\L

v v v P

FORTRAN ALGOL 58 COBOL BASI

Age of the Internet

s

1987

1991

| I
1993 1995

1980 98
@ @
ol

Perl

&

Python and lava

& >

PHP and JavaScript

v
Rll‘by

11

15 Generation Vacuum Tubes, Magnetic drums
= ortRAN |

58 FORTRAM 0

2nd Cener 3ﬂnn§§
Transistors 62 FORTRAN IV

(MWoddfied by T. 2w & B Salom ars from
FLOW-MATIC Sebegta, 2002 p 39

. L

w SHNOBOL
PLA

3 Generation ..
Integrated &
Circuit 5o
72 FROLDG*
T3
T4
15
16

17
78 FORTRAN 77 §

Fit
: /
a1

B2 '
a3 "

4™ Generation .. |
Chip %

28 2 Oberon
85 L SMODULA-3
S0 FORTRAM 90 &
91
o2
93
94 AMNE| FORTH

|
|
|
|
|
|
+ a5 Dalphi 1 Ada 95 3 lova

SIMIULA &7
LGOL 68

FORTH
Pascal

1l‘:'u|:h-u1'm

LMODULA-2

"

FORTHT7 I

] icoN
} COMMON LISP

12

Programming Language Generations

> 1GL or first-generation language was (and still is) machine @
language or the level of instructions and data that the
processor is actually given to work on.

2GL or second-generation language is assembler
(sometimes called "assembly”) language.

13

I
Programming Language Generations -l

> 3GL or third-generation language is a "high-level"
programming language, such as PL/I, C, or Java. A
compiler converts the statements of a specific high-level

rogramming language into machine language. A 3GL
anguage requires a considerable amount of programming
knowledge.

4GL or fourth-generation language is designed to be closer
to natural language than a 3GL language. Languages for
accessing databases are often described as 4GLs.

14

4
Programming Language Generations .

~ 5GL or fifth-generation language is programming that uses
a visual or graphical development interface to create source
language that is usually compiled with a 3GL or 4GL
language compiler. Microsoft, Borland, IBM, and other
companies make 5GL visual programming products for
developing applications in Java, for example. Visual
programming allows you to easily envision object-oriented
programming class hierarchies and drag icons to assemble
program components.

15

Machine Code (machine language)

~ Machine code, also known as machine language, is the
elemental language of computers, comprising a long
I sequence of binary digital zeros and ones (bits).

» Sometimes referred to as machine code or object code,
machine language is a collection of binary digits or bits that
the computer reads and interprets. Machine language is the
only language a computer is capable of understanding.

16

Machine Cog:le

le

felole

. o ,-"1"
3 IS v
Sy "“‘70‘_.‘

¥
I ~
[y

Real programmers code in binary.
17

Assembly Language [-I

Sometimes referred to as assembly or ASL, assembly
language is a low-level programming language used to
interface with computer hardware.

Assembly language uses structured commands as
substitutions for numbers allowing humans to read the
code easier than looking at binary. Although easier to read
than binary, assembly language is a difficult language and
" is usually substituted for a higher language such as C.

18

1
Low-level Languages -I

~ Low-level languages have the advantage that they can be
written to take advantage of any peculiarities in the
architecture of the central processing unit (CPU).

> Thus, a program written in a low-level language can be
extreme efficient, making optimum use of both computer
memory and processing time.

» However, to write a low-level program takes a substantial
amount of time, as well as a clear understanding of the inner
workings of the processor itself. Therefore, low-level
programming is typically used onIK for very small programs, or
- for segments of code that are highly critical and must run as
efﬂuently as possible.

1
High-level Languages , -I

~ High-level languages permit faster development of large
programs. The final program as executed by the computer is
| not as efficient, but the savings in programmer time generally
| far outweigh the inefficiencies of the finished product.

~ , This is because the cost of writing a program is nearly constant
for each line of code, regardless of the language.

> Thus, a high-level language where each line of code translates
to 1-0 machine instructions costs only one tenth as much in
program development as a low-level language where each line
= of code represents only a single machine instruction.

. | 20

First High-Level Language

Invented by John Backus R BLRELT:S

18" e Hreleased commerciallyfiRELYS

A high level programming language is
one that is far removed from the
computer’s Instruction architecture.
It is typically more[PEERIEREN] than
low level programming languages. Fortran user manual

Design and llustration
By Hie Koning

21

Programming Language Popularities

Aug 2023 Aug 2022 Change Programming Language Ratings Change
1 1 éa Python 13.33% -2.30%
2 gl O © 1.41% -3.35%
3 4 ~ @ C++ 10.63% +0.42%
4 3 v S, Java 10.33% -214%

5 5 @ C# T7.04% +1.64%
6 8 -~ Js JavaScript 3.29% +0.89%
7 6 v @ Visual Basic 2.63% -2.26%
8 9 ~ @ SQL 1.563% -0.14%

9 7 v @ Assembly language 1.34% -1.41%

10 10 . PHP 1.27% -0.09%
1 2 b3 Scratch 1.22% +0.63%
12 15 ~ =GO Go 116% +0.20%
13 17 A ‘ MATLAB 1.05% +017%

https://www.tiobe.com/tiobe-index/

22

https://www.tiobe.com/tiobe-index/

1
Compiler i

> A iS a special program that processes statements
written in a particular programming language and turns
them into machine language or "code" that a computer's
i Processor uses.

~ , After you write a program, your source language
- statements are compiled into machine code that is stored
as an executable file.

Scripting languages like Perl and PHP do not need to be
compiled.

23

Compiler

High-lewvel language code >[Compiler j—){ Executable)

(Executable j CPLU @ Program results

http://www.learncpp.com/cpp-tutorial/02-introduction-to-programming-languaqes/

24

http://www.learncpp.com/cpp-tutorial/02-introduction-to-programming-languages/

Structured Programming (modular programming) S

~ Structured programming (sometimes known as modular Frogramming) iS a
subset of procedural programming that enforces a logical structure on the
program being written to make it more efficient and easier to understand and
modify. Certain languages such as Ada, Pascal, and dBASE are designed with

I features that encourage or enforce a logical program structure.
~ Structured programming frequently employs a top-down design model, in which
- developers map out the overall program structure into separate subsections.

Program flow follows a“si'r'nple hierarchical model that employs looping

constructs such as "for", "repeat®, and "while" Use of the "Go To" statement is
discouraged.

Structured programming was first suggested by Corrado Bohm and Guiseppe
Jacopini. The two mathematicians demonstrated that any computer ?rogram
can be written with just three structures: decisions, sequences, and loops.

25

Object-Oriented Programming (OOP)

~ Object-oriented programming (OOP) is a programming
language model organized around "objects" rather than
I "actions” and data rather than logic.

» Historically, a program has been viewed as a logical
procedure that takes input data, processes it, and produces
output data.

26

Classification of Programming Languages

> Procedure-oriented programming
I > COBOL, FORTRAN, Pascal and C

Object oriented programming
Objective C, C++, Java, and PHP

27

Integrated Development Environment (IDE)

An IDE or Integrated Development Environment is a software
program that is designed to help programmers and
developers build software.

Most IDEs include:

a source code editor

a compiler

build automation tools
a debugger

28

Debugger

~ A special program used to find errors (bugs) in other
programs. A debugger allows a programmer to stop a ‘
program at any point and examine and change the values
of variables.

https://www.webopedia.com/definitions/debugger/

29

https://www.webopedia.com/definitions/debugger/

Graphical User Interface (GUI)

~ A GUI is a graphical (rather
than purely textual) user
interface to a computer.

> Elements of a GUI include
textboxes, buttons, pulldown
menues, list and combo boxes

button1

[] checkBox1

| labeit

1 |textoox

combobox

30

DEV C++ IDE

| P Isimsizl - Dev-C++ 5.

3.0.4 =10l x|
Dosya Dizen Ara Go@rinim Proje Calstr Hata Ayiklama Araclar CVS Pencere Yardim
[DEEEE 2 |~ | RER(IES| 440 BoBB | vidx| a4 |
I I {globals) jl Tarih/Saat
‘Proje Sinflar | pat 4] »| [Ilsimsizt | S
1 #include <stdic.h> i i
2 $include <conio.h> WinMain
3 main() { Main Window Proc
4 Child Window Proc
S [getch(): C Start
6 return 0;
7Ly for()
whileQ)
do-while()
if0
switch()
Class
Class Header Template
#ifdef
#ifndef
#ifdeffelse
EE Derleyici |‘ Kag,rnaklall dlh Derleme Mﬁajlanl o Hataag.rlklal @, Arama sanuglanl Kapail Fifndeffelse
Satir | Kol | Unite | Mesaj
Line: 7 Col: 2 Sel: 0 Liness 7 Length: 7& Ekle Diizenlendi S

31

DEV C++ IDE download page

For:" Dev-C++ Official Website Home Dev-C++ ~ Archives ~ Contact

Open Source C/C++ IDE for Windows

e TR P ———— - o x
He B Senoh Vew Papea Beodte Debug Took OV Windes Help {

94 Omada ~~BBE 864 9

Dev-C++is a full-featured C and C++ Integrated 94 0meds --[888 4 84
Development Environment (IDE) for Windows »-;m:_tl «MJ'";“‘
platforms. Millions of developers, students and goer S

researchers use Dev-C++ since the first version was
released in 1998. It has been featured in dozens of
C++ and scientific books and remains one of the o

favorite learning tool among universities & schools e
worldwide. T —

[= I L v |

TH)Sloalil e (ST, dNFLledize = 1))
w2y

o

’ Dev-C++4,5 & 6 on a USB drive or CD

DEV Download original Dev-C++5

‘I

Supports Windows 98, NT, 2000, XP Get your handy USB pendrive or CD and start programming instantly!

Dev-C++ 5.0 (4.9.9.2) with Mingw/GCC 3.4.2 compiler and GDB 5.2.1 debugger (9.0 Includes Dev-C++ 4, 4.9, 5 & 6 (official & forks), Dev-Pascal, legacy software,
MB) tutorials, documentation and source code. You can also develop with Dev-C++
directly from this USB pen drive with no installation required.

http://dev-cpp.com

S

Visual Studio Community

Visual Studio Community

Windows kullanan .NET ve C++ gelistiricileri icin en iyi
kapsamli IDE. Yazihm gelistirmenin her asamasini ytkseltip
gelistiren bir dizi gtizel araclar ve 6zelliklerle tam olarak
paketlenmistir.

Daha fazla bilgi edinin =

https://visualstudio.microsoft.com/tr/free-developer-offers/

38

Software Development Languages

> C

> C++ (C-plus-plus)
» C# (C-Sharp)

~ Python

34

Web Languages

> HTML (Hyper Text Markup Language)
~ XML (Extensible Markup Language)

» Javascript

~ VBScript

» PHP (Hypertext Preprocessor)

» Java

~ ASP (Active Server Pages)

35

Important People in Computer Programming

Charles Babbage

{He first came up with
the idea of difference
engine & analytical
.._engine and is regarded
as father of computer}

Alan Turing

{He is well known for the Halting
problem, Turing machines, crypto-
analysis of Enigma & Turing test.
Turing award is given annually
for exceptional work in the field
of computing}

John von Neumann

{He came up with the concept
ofstored program computer
that uses a CPU and a
separate storage to hold
both instructions and data.
This is also known as von
Neumann architecture}

John Backus

{He is well known for the
development of FORTRAN and
ALGOL. He is also the inventor
of Backus-Naur form and has
also helped to popularize
functional level programming}

Dennis Ritchie

{He is the creator of C
programming language and
was also amongst the key
developers of UNIX operating
system. He received the
Turing award in 1983}

Ken Thompson

{He is well known as the
principal creator of the UNIX
operating system and is also
the co-creator of the Go
programming language}

36

Important People in Computer Programming

Bjarne Stroustrup . Guido van Rossum

{He is well known for the | E=F)Py {He is well known as the author
creation and development of Python programming

of C++programming language and is currently

language and currently holds" ':
the college of engineering / employed by Google}

chair in computer science at
Texas A&M.}

Larry Wall

{He is well known for the
creation of Perl programming
language and is also the first
recepient of the Free Software

Richard Stallman

{He is the creator of Emacs
editor and the lead |
architect and organizer of 4#§
the GNU project. He has
been actively involved in

Foundation Award for the
Advancement of Free the free software
Software} movement}

Linus Torvalds
{He is best known for having
initiated the development of
Linux Kernel and the Git

revision control system. He

f .‘1‘:7' 2 z
\ﬁ\ G' GeekGraphic
L] part of what - a - geek.com
of Open Source software} \

is also a strong supporter
Designed By Adit Gupta 37

Pseudocode
Flowcharts

Assoc. Prof. Ozgiir ZEYDAN
https://ozgurzeydan.com.tr/

https://ozgurzeydan.com.tr/

.
Why do we have to learn computer programming-l

~ Computers can make calculations at a blazing speed
without any error as compared to the humans.

= > Example: calculate the prime numbers until 121.
r > How long does it take?
| Do you do any error?

Prime numbers: 2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
109, 113

ﬂh a problem is so easy for a computer...

Calculate the prime numbers until 121 588
02 50 50 [[i e mambers i

http://en.wikipedia.org/wiki/File:Sieve of Eratosthenes animation.gif

40

http://en.wikipedia.org/wiki/File:Sieve_of_Eratosthenes_animation.gif

)
Performing a Task on The Computer -I

~ The first step in writing instructions to carry out a task is to
determine what the output should be—that is, exactly what
m the task should produce.

» The second step is to identify the data, or input, necessary
to obtain the output.

The last step is to determine how to process the input to
obtain the desired output, that is, to determine what
formulas or ways of doing things can be used to obtain the
output.

A pictorial representation of problem-solving

Input ——» Processing ——» Output

42

I
Program Development Cycle .I

1. Analyze: Define the problem.

Be sure you understand what the program should do, that is,
I what the output should be. Have a clear idea of what data (or
_* input) are given and the relationship between the input and the
il desired output.

l
F .Design: Plan the solution to the problem.

Find a logical sequence of precise steps that solve the problem.
Such a sequence of steps is called an algorithm. Every detall,
including obvious steps, should appear in the algorithm.

I
Program Development Cycle il

3. Choose the interface: Select the objects.

Determine how the input will be obtained and how the output will be
displayed. Then create appropriate commands to allow the user to
H control the program.
r' 4. Code: Translate the algorithm into a programming language.

Coding is the technical word for writing the program.

. Test and debug: Locate and remove any errors in the program.

Testing is the process of finding errors in a program, and
debugging is the process of correcting errors that are found. (An error
in @ program is called a bug.)

)
Program Development Cycle BB

6. Complete the documentation: Organize all the material
that describes the program.

Documentation is intended to allow another person, or the

N rogrammer at a later date, to understand the program.
nternal documentation consists of statements in the program
- that are not executed, but point out the purposes of various

parts of the program.

0 Documentation might also consist of a detailed description of
= what the program does and how to use the program (for
instance, what type of input is expected).

For commercial programs, documentation includes an
instruction manual.

Other types of documentation are the and

i

[

T

/

How the cusiomer explained it How the Project Leader How the Analyst designed it How the Programmer wrole it How the Business Consuliant
understocd it described it

How the project was What operations installed
documented

How the customer was billed How it was supparted What the customer reaily
needed

46

How users see the programmers

[olngags.com

47

Ll
:;ll

~ Tools used to convert into computer programs:

Pseudocode: An informal high-level description of the operating
principle of a computer program. It uses the structural
conventions of a programming language, but is intended for
human reading rather than machine reading.

Flowcharts: Graphically depict the logical steps to carry out a
task and show how the steps relate to each other.

Programming Tools

Pseudocode vs Flowcharts

>~ Artificial and Informal language > A graphical way of writing

~ Helps programmers to plan an pseudocode

algorithm > Rounded rectangle — terminal
~ Similar to everyday English ~ Parallelogram — input / output
> Not an actual programming ~ Rectangle — actions

language » Diamonds — decision /
conditional

» Circles — connector

49

Flowchart Symbols

Symbol, Name, Meaning
> Flowiline Used to connect symbols and indicate the flow of
logic.

C) Terminal Used to represent the beginning (Start) or the end
(End) of a task.

/ / Input/Output Used for input and output operations, such as read-
ing and printing. The data to be read or printed are
described inside.

Processing Used for arithmetic and data-manipulation opera-
tions. The instructions are listed inside the symbol.
Decision Used for any logic or comparison operations. Unlike

the input/output and processing symbols, which
have one entry and one exit flowline, the decision
symbol has one entry and two exit paths. The path
chosen depends on whether the answer to a ques-
tion is “yes” or “no.”

50

Example Pseudocode

Start

Read A, B
Calculate C = A*B
Display C

Stop

Start - Terminal

Read A, B — Input
Calculate C = A*B - Action
Display C - Output

Stop - Terminal

51

Example Flowchart

Start Terminal.)
Start Program start
¢ here)

\

Read A Input.

Read B Enter values for
A and B

Calculate Resut
C=A*B Process

Display the
Result C — | Output

T | J

[Stop Terminal)
Stop Program end
_here)

(N

52

User Friendly Pseudocode

Start
Use variables A,B and C
Display “write two numbers”
" Read A, B
alculate C = A*B
isplay “multiplication of numbers” , C

top

I

53

Question ??7?

» Write an algorithm to calculate Fahrenhayt value of
temperature if celcius valeu is given.

_(F-32) _ (©)

180 100

Write a pseudocode.
Draw a flowchart.

54

1
Structured Programming .

~ Structured pro ramr_ni_ngl_was first suggested by Corrado Bohm
and Guiseppe Jacopini. The two mathematicians demonstrated
that any computer program can be written with just three
structures: sequences, decisions, and loops.

> Sequences: one command is executed after previous one.

» Decisions (selections): statement(s) is (are) executed if certain
condition gives TREU or FALSE value.

Loo_||:>s (repetition _:_state_ment&s% IS (ar? executed repeatedly
until certain condition gives TREU or FALSE value.

Corrado; B. and Jacopini, G. (May 1966). "Flow Diagrams,
Turing Machines and Languages with Only Two Formation
Rules™. Communications of the ACM 9 (5): 366—371.

Sequence

Sequences

J
=s
o
|
|

Ref: Deitel P J (Ed.) (2010) C How I

to Program, 6th Edition, Prentice

Hall
O

56

Decisions (selections)

> Three selection structure in C
programming:

L If 1f statement
B . If — else T (single selection)
= Switch T
—

Ref: Deitel P J (Ed.) (2010) C How
to Program, 6th Edition, Prentice
Hall

S

57

DECiSiOnS switch statement

T (multiple selection)

(selections) :

S —» bhreak —m
if...else statement iF
double selecti
T (double selection) T break

l' ; T l l:r

"'I"‘ I, — = break —»
lr

Ref: Deitel P J (Ed.) (2010) C How B
to Program, 6th Edition, Prentice l
Hall O

58

Loops (repetition)

~ Three repetition structure while statement
in C programming: Q
' . While B
= Do — while Y
.

= For —

|
Ref: Deitel P J (Ed.) (2010) C How
to Program, 6th Edition, Prentice
Hall

59

Loops (repetition)

for statement

do...while statement T
|
F

O
| Ref: Deitel P J (Ed.) (2010) C How to Program, 6th Edition, Prentice Hall

60

Pseudocode and Flowchart for a Decision Structu

Mo Is Yes

condition
L l true? l
If condition is true Then

Process step(s) 1
Else Process Process
step(s) 2 step(s) 1

-Q-

Process stepl(s) 2
End If

61

Example - 2

~ Write an algorithm to determine a student’s average grade
and indicate whether he is successful or not.

~ The average grade is calculated as the average of mid-term
and final marks.

Student will be successful if his average grade is grater or
equals to 60.

62

Pseudocode

» Start
> Use variables mid term , final and average
> Input mid term and final

» Calculate the average by summing mid term and final
and dividing by 2

~ if average is below 60
Print “"FAIL"
else
| Print "SUCCESS”
> Stop

63

Detailed Algorithm

~ 1. Step: Input mid-term and final
~ 2. Step: average = (mid-term + final)/2
~ 3. Step: if (average < 60) then

I » Print “FAIL"

else

Print "SUCCESS”
endif

64

Flowchart

Input
mid-term, final

A 4

average = (mid-term + final)/2

N If
average<6o
\4 v
PRINT PRINT
“SUCCESS” “FAIL”

(STOP

65

Nested If

~ Simply,
> : Both final and average grades must be grater than
or equals to 35 for curve calculation in BEU.

~ if (final >= 35) then

{ if (average >= 35) then
execute curve calculation commands
endif }

else
Print “FF grade”
endif

66

Pseudocode and Flowchart for a Loop

Is
condition
true?

Do While condition is true
Process step(s)
Loop

Process
step(s)

67

~ Write an algorithm which calculates the average exam
grade for a class of 5 students.
~ What are the program inputs?
« the exam grades
> Processing:
« Find the sum of the grades;
« count the number of students; (counter controlled)

=« calculate average grade = sum of grades / number of
students.

~ What is the program output?
= the average exam grade

Example - 4

68

vV VvV V¥V VWY V¥V ¥V ¥V V¥V Vv V VYV V

Start

Pseudocode

Use variables total, counter, grade, average
Initialize total = 0
Initialize counter = 1
While (counter <= 5)
[nput grade

Calcu
Calcu
End-whi

ate total = total + grade
ate counter = counter + 1

S

Calculate average = total / 5
Display average

Stop

69

(Start >
v

Variables

v

Initialization

counter <=5 NO
YES
/ Input Grade /
i 4
Calculate average
Calculate total L
/ Display /
Calculate counter averfge
C Stop >

70

~ Write an algorithm which calculates the average exam
grade for a class of unknown number of students.

~ What are the program inputs?
« the exam grades

> Processing:

« Find the sum of the Erades till sentinel value is given; for
example to break loop (sentinel controlled)

« calculate average grade = sum of grades / number of
students.

~» What is the program output?
« the average exam grade

Example - 5

/1

Pseudocode

Start
Use variables total, counter, grade, average
Initialize total = 0
Initialize counter = 0
While (grade != -99)

Input grade

Calculate total = total + grade

Calculate counter = counter + 1
End-while
Calculate average = total / counter
Display average
Stop

YV vV V VW VY VY ¥V VY VY VY VYV VY

72

Example - 6

~ Write an algorithm which calculates the average
exam grade for a class of unknown number of
students.

> This time, the number of students have been asked
at the beginning of the program.

> Use structure.

73

Pseudocode

> Start
> Use variables total, counter, grade, average, number_of_students
> Initialize total = 0, number_of students = 0, counter = 1
Display “write number of students”
Input number_of_students
While (counter <= number_of_students)
Input grade
Calculate total = total + grade
Calculate counter = counter + 1
End-while
Calculate average = total / number_of_students
Display average
Stop

74

Question

~ Draw a flowchart for example — 6.

75

Fatal Error — Memorizing

> Do not memorize any of
the codes in programming. '
\ O Come on-

~ Read and try to understand how fatal) ZABE| IS
and Can 1t be? 4 Z? Aval | | |
]] sSs< g & |
in the question, then ('*/‘ 8 |
write your own codes. W B

76

	Slayt 1: Introduction to Computer Programming
	Slayt 2: Computer Programming
	Slayt 3: Computer Programming
	Slayt 4: First Computer Programmer: Ada Lovelace
	Slayt 5: Algorithm
	Slayt 6: Pseudocode
	Slayt 7: Source Code
	Slayt 8: Flowchart
	Slayt 9: Programming Languages
	Slayt 10: Programming Languages
	Slayt 11: History of Programming Languages
	Slayt 12
	Slayt 13: Programming Language Generations
	Slayt 14: Programming Language Generations
	Slayt 15: Programming Language Generations
	Slayt 16: Machine Code (machine language)
	Slayt 17: Machine Code
	Slayt 18: Assembly Language
	Slayt 19: Low-level Languages
	Slayt 20: High-level Languages
	Slayt 21: First High-Level Language
	Slayt 22: Programming Language Popularities
	Slayt 23: Compiler
	Slayt 24: Compiler
	Slayt 25: Structured Programming (modular programming)
	Slayt 26: Object-Oriented Programming (OOP)
	Slayt 27: Classification of Programming Languages
	Slayt 28: Integrated Development Environment (IDE)
	Slayt 29: Debugger
	Slayt 30: Graphical User Interface (GUI)
	Slayt 31: DEV C++ IDE
	Slayt 32: DEV C++ IDE download page
	Slayt 33: Visual Studio Community
	Slayt 34: Software Development Languages
	Slayt 35: Web Languages
	Slayt 36: Important People in Computer Programming
	Slayt 37: Important People in Computer Programming
	Slayt 38: Algorithms Pseudocode Flowcharts
	Slayt 39: Why do we have to learn computer programming?
	Slayt 40: Calculate the prime numbers until 121
	Slayt 41: Performing a Task on The Computer
	Slayt 42: A pictorial representation of problem-solving
	Slayt 43: Program Development Cycle
	Slayt 44: Program Development Cycle
	Slayt 45: Program Development Cycle
	Slayt 46
	Slayt 47
	Slayt 48: Programming Tools
	Slayt 49: Pseudocode vs Flowcharts
	Slayt 50: Flowchart Symbols
	Slayt 51: Example Pseudocode
	Slayt 52: Example Flowchart
	Slayt 53: User Friendly Pseudocode
	Slayt 54: Question ???
	Slayt 55: Structured Programming
	Slayt 56: Sequences
	Slayt 57: Decisions (selections)
	Slayt 58: Decisions (selections)
	Slayt 59: Loops (repetition)
	Slayt 60: Loops (repetition)
	Slayt 61: Pseudocode and Flowchart for a Decision Structure
	Slayt 62: Example - 2
	Slayt 63: Pseudocode
	Slayt 64: Detailed Algorithm
	Slayt 65: Flowchart
	Slayt 66: Nested If
	Slayt 67: Pseudocode and Flowchart for a Loop
	Slayt 68: Example - 4
	Slayt 69: Pseudocode
	Slayt 70: Flowchart
	Slayt 71: Example - 5
	Slayt 72: Pseudocode
	Slayt 73: Example - 6
	Slayt 74: Pseudocode
	Slayt 75: Question
	Slayt 76: Fatal Error – Memorizing

